direct product, metabelian, supersoluble, monomial, rational
Aliases: S32×Q8, Dic6⋊14D6, (C3×Q8)⋊10D6, (C4×S3).26D6, (S3×Dic6)⋊12C2, C32⋊4(C22×Q8), (C3×C6).24C24, C6.24(S3×C23), (S3×C6).26C23, (C3×C12).36C23, C12.36(C22×S3), D6.26(C22×S3), C32⋊2Q8⋊5C22, Dic3.D6⋊14C2, (Q8×C32)⋊9C22, (S3×C12).35C22, (C3×Dic6)⋊16C22, C3⋊Dic3.25C23, (S3×Dic3).6C22, C32⋊4Q8⋊11C22, Dic3.13(C22×S3), (C3×Dic3).17C23, C6.D6.10C22, C3⋊3(C2×S3×Q8), (C3×S3×Q8)⋊9C2, (C4×S32).4C2, C4.36(C2×S32), (Q8×C3⋊S3)⋊7C2, C3⋊S3⋊3(C2×Q8), (C3×S3)⋊2(C2×Q8), C2.26(C22×S32), (C2×S32).16C22, (C4×C3⋊S3).46C22, (C2×C3⋊S3).47C23, SmallGroup(288,965)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S32×Q8
G = < a,b,c,d,e,f | a3=b2=c3=d2=e4=1, f2=e2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 1058 in 331 conjugacy classes, 122 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C2×C4, Q8, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C22×C4, C2×Q8, C3×S3, C3⋊S3, C3×C6, Dic6, Dic6, C4×S3, C4×S3, C2×Dic3, C2×C12, C3×Q8, C3×Q8, C22×S3, C22×Q8, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, C2×Dic6, S3×C2×C4, S3×Q8, S3×Q8, C6×Q8, S3×Dic3, C6.D6, C32⋊2Q8, C3×Dic6, S3×C12, C32⋊4Q8, C4×C3⋊S3, Q8×C32, C2×S32, C2×S3×Q8, S3×Dic6, Dic3.D6, C4×S32, C3×S3×Q8, Q8×C3⋊S3, S32×Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C24, C22×S3, C22×Q8, S32, S3×Q8, S3×C23, C2×S32, C2×S3×Q8, C22×S32, S32×Q8
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 45)(6 11 46)(7 12 47)(8 9 48)(21 25 30)(22 26 31)(23 27 32)(24 28 29)(33 42 37)(34 43 38)(35 44 39)(36 41 40)
(1 34)(2 35)(3 36)(4 33)(5 30)(6 31)(7 32)(8 29)(9 28)(10 25)(11 26)(12 27)(13 42)(14 43)(15 44)(16 41)(17 40)(18 37)(19 38)(20 39)(21 45)(22 46)(23 47)(24 48)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 45)(6 11 46)(7 12 47)(8 9 48)(21 30 25)(22 31 26)(23 32 27)(24 29 28)(33 42 37)(34 43 38)(35 44 39)(36 41 40)
(1 36)(2 33)(3 34)(4 35)(5 27)(6 28)(7 25)(8 26)(9 31)(10 32)(11 29)(12 30)(13 39)(14 40)(15 37)(16 38)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 24 3 22)(2 23 4 21)(5 44 7 42)(6 43 8 41)(9 40 11 38)(10 39 12 37)(13 30 15 32)(14 29 16 31)(17 26 19 28)(18 25 20 27)(33 45 35 47)(34 48 36 46)
G:=sub<Sym(48)| (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,42,37)(34,43,38)(35,44,39)(36,41,40), (1,34)(2,35)(3,36)(4,33)(5,30)(6,31)(7,32)(8,29)(9,28)(10,25)(11,26)(12,27)(13,42)(14,43)(15,44)(16,41)(17,40)(18,37)(19,38)(20,39)(21,45)(22,46)(23,47)(24,48), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,42,37)(34,43,38)(35,44,39)(36,41,40), (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46)>;
G:=Group( (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,42,37)(34,43,38)(35,44,39)(36,41,40), (1,34)(2,35)(3,36)(4,33)(5,30)(6,31)(7,32)(8,29)(9,28)(10,25)(11,26)(12,27)(13,42)(14,43)(15,44)(16,41)(17,40)(18,37)(19,38)(20,39)(21,45)(22,46)(23,47)(24,48), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,42,37)(34,43,38)(35,44,39)(36,41,40), (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46) );
G=PermutationGroup([[(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,45),(6,11,46),(7,12,47),(8,9,48),(21,25,30),(22,26,31),(23,27,32),(24,28,29),(33,42,37),(34,43,38),(35,44,39),(36,41,40)], [(1,34),(2,35),(3,36),(4,33),(5,30),(6,31),(7,32),(8,29),(9,28),(10,25),(11,26),(12,27),(13,42),(14,43),(15,44),(16,41),(17,40),(18,37),(19,38),(20,39),(21,45),(22,46),(23,47),(24,48)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,45),(6,11,46),(7,12,47),(8,9,48),(21,30,25),(22,31,26),(23,32,27),(24,29,28),(33,42,37),(34,43,38),(35,44,39),(36,41,40)], [(1,36),(2,33),(3,34),(4,35),(5,27),(6,28),(7,25),(8,26),(9,31),(10,32),(11,29),(12,30),(13,39),(14,40),(15,37),(16,38),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,24,3,22),(2,23,4,21),(5,44,7,42),(6,43,8,41),(9,40,11,38),(10,39,12,37),(13,30,15,32),(14,29,16,31),(17,26,19,28),(18,25,20,27),(33,45,35,47),(34,48,36,46)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | ··· | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | ··· | 12F | 12G | 12H | 12I | 12J | ··· | 12O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 2 | 6 | ··· | 6 | 18 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 4 | ··· | 4 | 8 | 8 | 8 | 12 | ··· | 12 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | - | + | + | + | + | - | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | Q8 | D6 | D6 | D6 | S32 | S3×Q8 | C2×S32 | S32×Q8 |
kernel | S32×Q8 | S3×Dic6 | Dic3.D6 | C4×S32 | C3×S3×Q8 | Q8×C3⋊S3 | S3×Q8 | S32 | Dic6 | C4×S3 | C3×Q8 | Q8 | S3 | C4 | C1 |
# reps | 1 | 6 | 3 | 3 | 2 | 1 | 2 | 4 | 6 | 6 | 2 | 1 | 4 | 3 | 1 |
Matrix representation of S32×Q8 ►in GL6(𝔽13)
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 11 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 10 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,11,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,10,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S32×Q8 in GAP, Magma, Sage, TeX
S_3^2\times Q_8
% in TeX
G:=Group("S3^2xQ8");
// GroupNames label
G:=SmallGroup(288,965);
// by ID
G=gap.SmallGroup(288,965);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^4=1,f^2=e^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations